Tesla is wrong to use “autopilot” term

Self driving cars are a hot topic!   See this Wikipedia page on Autonomous cars for a short primer.  This post is mainly a bit of exploration of how the technology is presented to the user.

Tesla markets their self driving technology using the term “Autopilot”.  The German government is apparently unhappy with the use of that term because it could be misleading (LA Times):

Germany’s transport minister told Tesla to cease using the Autopilot name to market its cars in that country, under the theory that the name suggests the cars can drive themselves without driver attention, the news agency Reuters reported Sunday.

Tesla wants to be perceived as first to market with a fully autonomous car (using the term Autopilot) yet they stress that it is only a driver assistance system and that the driver is meant to stay vigilant.  But I do not think term Autopilot is perceived that way by most lay people.  It encourages an unrealistic expectation and may lead to uncritical usage and acceptance of the technology, or complacency.

Complacency can be described and manifested as:

  • too much trust in the automation (more than warranted)
  • allocation of attention to other things and not monitoring the proper functioning of automation
  • over-reliance on the automation (letting it carry out too much of the task)
  • reduced awareness of one’s surroundings (situation awareness)

Complacency is especially dangerous when unexpected situations occur and the driver must resume manual control.  The non-profit Consumer Reports says:

“By marketing their feature as ‘Autopilot,’ Tesla gives consumers a false sense of security,” says Laura MacCleery, vice president of consumer policy and mobilization for Consumer Reports. “In the long run, advanced active safety technologies in vehicles could make our roads safer. But today, we’re deeply concerned that consumers are being sold a pile of promises about unproven technology. ‘Autopilot’ can’t actually drive the car, yet it allows consumers to have their hands off the steering wheel for minutes at a time. Tesla should disable automatic steering in its cars until it updates the program to verify that the driver’s hands are on the wheel.”

Companies must commit immediately to name automated features with descriptive—not exaggerated—titles, MacCleery adds, noting that automakers should roll out new features only when they’re certain they are safe.

Tesla responded that:

“We have great faith in our German customers and are not aware of any who have misunderstood the meaning, but would be happy to conduct a survey to assess this.”

But Tesla is doing a disservice by marketing their system using the term AutoPilot and by selectively releasing video of the system performing flawlessly:

Using terms such as Autopilot, or releasing videos of near perfect instances of the technology will only hasten the likelihood of driver complacency.

But no matter how they are marketed, these systems are just machines that rely on high quality sensor input (radar, cameras, etc).  Sensors can fail, GPS data can be old, or situations can change quickly and dramatically (particularly on the road).  The system WILL make a mistake–and on the road, the cost of that single mistake can be deadly.

Parasuraman and colleagues have heavily researched how humans behave when exposed to highly reliable automation in the context of flight automation/autopilot systems.  In a classic study, they first induced a sense of complacency by exposing participants to highly reliable automation.  Later,  when the automation failed, the more complacent participants were much worse at detecting the failure (Parasuraman, Molloy, & Singh, 1993).

Interestingly, when researchers examined very autonomous autopilot systems in aircraft, they found that pilots were often confused or distrustful of the automation’s decisions (e.g., initiating course corrections without any pilot input) suggesting LOW complacency.  But it is important to note that pilots are highly trained, and have probably not been subjected to the same degree of effusively positive marketing that the public is being subjected regarding the benefits of self-driving technology.  Tesla, in essence, tells drivers to “trust us“, further increasing the likelihood of driver complacency:

We are excited to announce that, as of today, all Tesla vehicles produced in our factory – including Model 3 – will have the hardware needed for full self-driving capability at a safety level substantially greater than that of a human driver. Eight surround cameras provide 360 degree visibility around the car at up to 250 meters of range. Twelve updated ultrasonic sensors complement this vision, allowing for detection of both hard and soft objects at nearly twice the distance of the prior system. A forward-facing radar with enhanced processing provides additional data about the world on a redundant wavelength, capable of seeing through heavy rain, fog, dust and even the car ahead.

To make sense of all of this data, a new onboard computer with more than 40 times the computing power of the previous generation runs the new Tesla-developed neural net for vision, sonar and radar processing software. Together, this system provides a view of the world that a driver alone cannot access, seeing in every direction simultaneously and on wavelengths that go far beyond the human senses.


Parasuraman, R., & Molloy, R. (1993). Performance consequences of automation-induced“complacency.” International Journal of Aviation Psychology, 3(1), 1-23.

Some other key readings on complacency:

Parasuraman, R. (2000). Designing automation for human use: empirical studies and quantitative models. Ergonomics, 43(7), 931–951. http://doi.org/10.1080/001401300409125

Parasuraman, R., & Wickens, C. D. (2008). Humans: Still vital after all these years of automation. Human Factors, 50(3), 511–520. http://doi.org/10.1518/001872008X312198

Parasuraman, R., Manzey, D. H., & Manzey, D. H. (2010). Complacency and Bias in Human Use of Automation: An Attentional Integration. Human Factors, 52(3), 381–410. http://doi.org/10.1177/0018720810376055