Category Archives: aging

Older adults and Windows 8

In an earlier post we discussed how illuminating simple user testing can be. The video below is computer blogger Chris Pirrilo who put his dad in front of the new Windows 8 Preview. The dad seems to be relatively sophisticated and knows about Windows 7 but is completely flummoxed by Windows 8 new “Metro” interface.

Note that this is the reaction of just one person but we shouldn’t discount it. Plenty of users (both young and old) are not as sophisticated as you and I. I guess Anne and I (and other human factors & aging researchers) will still have lots of work!

(via Daring Fireball)

Development of the ground proximity warning system for aviation

This article tells the story of inspiration for and creation of a “ground proximity warning” system for pilots, as well as multiple other types of cockpit warnings. Don’t miss the video embedded as a picture in the article! It has the best details!

Some choice excerpts:

About 3.5 miles out from the snow-covered rock face, a red light flashed on the instrument panel and a recorded voice squawked loudly from a speaker.

“Caution — Terrain. Caution — Terrain.”

The pilot ignored it. Just a minute away from hitting the peaks, he held a steady course.

Ten seconds later, the system erupted again, repeating the warning in a more urgent voice.

The pilot still flew on. Snow and rock loomed straight ahead.

Suddenly the loud command became insistent.

“Terrain. Pull up! Pull up! Pull up! Pull up! Pull up!”

Accidents involving controlled flight into terrain still happen, particularly in smaller turboprop aircraft. During the past five years, there have been 50 such accidents, according to Flight Safety Foundation data.

But since the 1990s, the foundation has logged just two in aircraft equipped with Bateman’s enhanced system — one in a British Aerospace BAe-146 cargo plane in Indonesia in 2009; one in an Airbus A321 passenger jet in Pakistan in 2010.

In both cases, the cockpit voice recorder showed the system gave the pilots more than 30 seconds of repeated warnings of the impending collisions, but for some reason the pilots ignored them until too late.

After a Turkish Airlines 737 crashed into the ground heading into Amsterdam in 2009, investigators discovered the pilots were unaware until too late that their air speed was dangerously low on approach. Honeywell added a “low-airspeed” warning to its system, now basic on new 737s.

For the past decade, Bateman has worked on ways of avoiding runway accidents by compiling precise location data on virtually every runway in the world.

Little Printer Concept

In the “why didn’t I think of this!” department, we have the Little Printer Concept by Berg.  It basically seems like a cash register thermal printer (in much nicer packaging) that sits in your home and prints messages, puzzles, etc.  

I could see this being very useful for older consumers who are resistant to technology.  Imagine printing medication instructions or doctor appointment reminders or any reminder.  Another use might be adult children using it to send their parents messages that they can rip and read anywhere.

I love the simplicity of the design and the fact that you can take the output anywhere you want (unlike a WIFI-digital picture frame or other “high tech” solution).  I really hope this product comes to market.  The video is definitely worth a look.

Hello Little Printer, available 2012 from BERG on Vimeo.

Resources: Human Factors Design Considerations in Home Health Technology

The National Academies of Science and Agency for Healthcare Research and Quality have just released two publications.

The first, Health Care Comes Home, is a 200 page report:

Health Care Comes Home reviews the state of current knowledge and practice about many aspects of health care in residential settings and explores the short- and long-term effects of emerging trends and technologies. By evaluating existing systems, the book identifies design problems and imbalances between technological system demands and the capabilities of users. Health Care Comes Home recommends critical steps to improve health care in the home. The book’s recommendations cover the regulation of health care technologies, proper training and preparation for people who provide in-home care, and how existing housing can be modified and new accessible housing can be better designed for residential health care. The book also identifies knowledge gaps in the field and how these can be addressed through research and development initiatives.

The second, Consumer Health Information Technology in the Home: A Guide for Human Factors Design Considerations, is a free designers guide:

Consumer Health Information Technology in the Home introduces designers and developers to the practical realities and complexities of managing health at home. It provides guidance and human factors design considerations that will help designers and developers create consumer health IT applications that are useful resources to achieve better health.

“Feel the pleasure of the mind in the least allayed”

Enjoy this short but entertaining look at “Benjamin Franklin – the first American ergonomist?” by Dr. John Senders (who has appeared previously on this blog).

An excerpt:

Professor Chaplin states of Franklin (p. 65): Cato Major, or His Discourse of Old Age (1744). Franklin solicitously printed the book in large type so that elderly readers (beyond the help even of spectacles) ‘may not, in Reading, by the Pain small letters give the eyes, feel the pleasure of the mind in the least allayed.'”

Enjoy poking around the HFES archives, as well!

Photo shows Benjamin Franklin’s proposal for bifocals, as found at the Library of Congress website.

Designing Displays for Older Adults: Chapter 4 Cognition (excerpt)

Below is an excerpt of Chapter 4 from our book.  The book is available where fine books are sold or directly from our publisher CRC Press.  Until January 31, 2011, you can get 20% off the cover price when you purchase directly from CRC Press using this link and this code: 810DE.

Price: $69.95, Cat. #: K10089, ISBN: 9781439801390, ISBN 10: 1439801398

Chapter Contents (excerpt is bolded below)

4. Cognition
4.1 How Cognition Changes With Age
4.1.1 Fluid Abilities
4.1.1.1 Perceptual Speed
4.1.1.2 Working Memory Capacity
4.1.1.2.1 Environmental Support
4.1.1.3 Attention
4.1.1.4 Reasoning Ability
4.1.1.5 Spatial Ability

4.1.1.6 Interim Summary of Fluid Abilities
4.1.2 Crystallized Knowledge
4.1.2.1 Verbal Ability
4.1.2.2 Knowledge and Experience
4.1.2.3 Mental Models
4.1.2.4 Interim Summary of Crystallized Intelligence
4.2 In Practice: Organization of Information
4.4.1 Page Navigation vs. Browser Navigation
4.4.2 Previous Knowledge and Browsing/Searching for Information
4.3 General Design Guidelines
4.4 Suggested Readings

4.1.1.4 Reasoning Ability

Reasoning ability is the ability to tackle and understand novel situations. It is the ability that one uses when faced with a new television remote control, visits an unfamiliar website, or tries out a new computer application without reading the manual. Psychologists measure reasoning ability using abstract tests that require test takers to determine logical sequences in patterns. Figure 4.7 illustrates a sample item from such test. The task is to examine the figures on the test to discover the rule that governs the sequence of shapes and then select the correct shape in the sequence. The abstractness of the test is deliberate so that factors such as cultural background or language skill will not interfere with the results.

Figure 4.8 Reasoning ability

The link between performance on such tests and performance in a novel interface may seem distant, but they do share a common mental ability. When users pick up a new mobile phone or try to use a ticket kiosk in a foreign train station they are carrying out mental processing similar to answering the reasoning test: examining the options on the screen and then trying out different options to discover the next logical step. Unfortunately pure reasoning ability (as best as psychologists can measure it) also shows decline with aging with declines starting as early as age twenty (Figure 4.8).

Generally, making displays easier to use involve reducing the level of uncertainty about what to do next in the task so that reasoning ability is less of a factor in success. This could mean being more specific about the purpose of each task step and the consequences of actions as well as informing the user of their overall progress (for example, making explicit the number of steps remaining). Using icons that are less abstract and more representative of their function or task can also reduce the level of uncertainty.

However, it is rare to encounter everyday situations where one has no prior knowledge or experience and pure abstract reasoning is required. Instead, users usually always bring some amount of information or experience to these situations and use their prior knowledge to gauge expectations and guide behavior. This “mental set” is a particular way in which people approach and solve problems that is informed by prior experience or knowledge (everyday intelligence or cognition). This is why creating displays that act in ways users expect will reduce the need for reasoning ability.

4.1.1.5 Spatial Ability

Spatial ability helps a person mentally manipulate location-based representations of the world.  This ability is important for reading a map of an unfamiliar city or trying to orient oneself by using the navigation system in a vehicle car.  In these kinds of tasks, users transform, rotate, and manipulate the physical environment in their head.  People also need spatial ability when they create or manipulate mental models.  A mental model is a mental representation of a physical system—a map of sorts.  For example, some people have mental maps of the layout of their childhood home or neighborhood.  The mental map allows them to navigate the area quickly and may even facilitate the discovery and usage of “shortcuts” that speed navigation.  In one test for spatial ability, the cube comparison test, the respondent has to decide whether the two cubes shown represent the same cube, but sitting on another face, or a completely different cube.  Arriving at an answer quickly depends on the respondent’s spatial abilities.

Researchers have found that spatial ability is critical in the use of some kinds of computerized interfaces and tasks such as browsing the Web.  For example, imagine the situation where a user browses a deep hierarchy (e.g., the Amazon.com online store).  At a certain point, the user needs a mental model or map of the system so they know where they have been.  The presence of the map allows users to more easily navigate the information hierarchy because it precludes the need for the user to create their own mental versions, but such a map is harder to create for older users.

Designing Displays for Older Adults: Chapter 3 Hearing (excerpt)

Below is an excerpt of Chapter 3 from our book.  You can read an excerpt of chapter 1 here. You can also enter to win one of two copies.  The book is available where fine books are sold or directly from our publisher CRC Press.  Until January 31, 2011, you can get 20% off the cover price when you purchase directly from CRC Press using this link and this code: 810DE.

Price: $69.95, Cat. #: K10089, ISBN: 9781439801390, ISBN 10: 1439801398

Chapter Contents (excerpt is section 3.8)

3. Hearing
3.1 How Hearing Changes With Age
3.1.1 Pitch Perception
3.1.2 Loudness
3.1.3 Sound Localization
3.1.4 Sound Compression
3.1.5 Mp3s, Cell Phones and Other Compressed Audio
3.1.6 Background Noise
3.2 Interim Summary
3.3 Accessibility Aids
3.3.1 Hearing Aids
3.3.2 Telephony Services
3.4 Interim Summary
3.5 Human Language
3.5.1 Prosody
3.5.2 Speech Rate
3.5.3 Environmental Support
3.6 Interim Summary
3.7 Designing Audio Displays
3.7.1 Voice
3.7.2 Context
3.7.3 Passive Voice
3.7.4 Prompts
3.7.5 Number and Order of Options
3.7.6 Alerts
3.8 In Practice: The Auditory Interface
3.9 General Design Guidelines
3.10 Suggested Readings

3.8 In Practice: The Auditory Interface

The textual representation of the menu shown in Figure 3.7 appears to be a very simple menu, certainly more simple than some of the nine-option menus some companies offer.  However, this menu becomes deceptively complex in an audio format.  Remember, the listener cannot glance back to any part of the menu that he or she misses, and must hold each option in memory while comparing every new option to find the “best” selection to complete the task.

In this menu the user is greeted, and offered a positive message.  What follows should be either an instruction with how to proceed in the system or the most common choice.  Here, the user is directed for a very particular activity – a loan advance (and probably not the most common option chosen) – to visit a website.  The wording of this information is lengthy and confusing and there is little information on how to access the website or what one should do with no internet access options.  This first option sets up confusion and delays the understanding of subsequent options and commands.  However an audio menu cannot be paused to let the user mentally catch up.

The next information is a command to choose an option; however this is not directly followed by options.  Instead, the listener is informed about their privacy rights.  This is another interruption in user expectancies for the system.  This is followed by a very typical menu of choices organized in a way that is useful to the bank.

However, how a bank organizes choices (by departments or their computer system) is probably not how a user organizes them.  These general categories defined by the bank are :  User Account, Salary Advance, Loans, Mortgages, and Other.  If it is true that users think of their mortgage as being separate from a “loan,” then it would make sense to list the part (mortgage) before the whole (loans) to keep users who think of their mortgage as a loan from choosing “loans” before they hear the mortgage option.

A more useful order would be to group the portions of this menu into categories: rhetorical information, instruction, and responsive information.  All rhetorical information (welcome, thanks, privacy, etc.) belongs up front.  Be cautious, however, as lengthy rhetorical information can produce inattention in the user, and they may tune out for the instruction and responses.

The following steps constitute one example of a re-design and testing plan.

  • Step 1: Make a list of all options currently offered or desired in the phone system
  • Step 2: Examine previous phone system data and select the 4 most commonly chosen options
  • Step 3: Create representative tasks for most common options and for least common options
  • Step 4: Recruit older users and perform a card sort with all options. Have users write the expected functions under each option. What kind of functions and information do they expect to find under “Account Options?”
  • Step 5: Compare the number of groups and options within each group to the 4 most commonly chosen options
  • Step 6: Create new interface with top 4 options, with user-defined functions under each option.  Include other top level options under “Other”

Another design recommendation is to include natural language triggered by user responses.  For example, if a user presses 3 or says “Loans,” the response from the system could be “Ok, you said loans, right? Let me get that.” (The system should listen for a “no” at this time).  This allows the user time to think and provides environmental support by reminding the user of the next step.  This is desirable despite the time it adds.

Figure 3.8 Redesign of the telephone menu system

The re-designed menu in Figure 3.8 shows significant improvements over the first system.  This menu offers more options (7), but they are presented in a manageable way.  First, the menu offers voice response and monitors for response during presentation of the options.  If the system thought the user said “loans,” it replies with “That was loans, right?” If the user then says “no,” the system repeats the original menu with a natural language introduction.  “Ok, let me say the options again.  Insurance,….” The system offers an explanation for its actions that prepares the user for a response (and prepares them for the result of their response,) such as “I’ll need to ask you a few questions so I can transfer your call.”

Second, notice that the menu changes based on non-response.  Rather than repeating the same options that produced no response from the user, the interface tries different tactics.  If no voice responses occur, the system offers button press options, but does not clutter the initial interface with these less natural inputs.  Last, notice how the options with button presses change as they progress down the line: the first two options include extra information: “You can say ‘new account’ or press 1.  Quotes press 2.” Then the reminders to say or press disappear, as the user is only interested in the options.  This is a nice implementation of menu simplification via natural language and a good example of how to move from overall context to list format.

The benefits of such a menu are many and extend beyond the hearing chapter of this book.  Such improvements are helpful for working memory, language comprehension, and decision making as discussed in Chapter 4.

Win a copy of Designing Displays for Older Adults

Look what came in the mail! To help celebrate the publication of our book Designing Displays for Older Adults, we are giving away two copies (retail value $69.95 each) to two randomly chosen twitter followers.   If you already follow @hfblog, you’re entered!  If you would like to enter, just follow @hfblog using your twitter account–no purchase necessary.  We’ll announce the winners January 17th, 2011.  Good luck!

Age-related differences in the use of the Internet

One of my major research interests is in how people of all ages, especially older adults (those over age 65) use the Internet (shameless plug for our new book on Designing Displays for Older Adults).  The Pew Internet & American Life Project recent came out with a new survey of Internet usage across the age groups.

A counter-intuitive finding is that while those age 18-33 are more likely to access the Internet non-conventionally, it is a slightly older age group (34-45; my age group) that are more likely to engage in a wider variety of online activities.

The table below shows usage patterns by age group.  Here is the full report.

More usability in the news: CAPS LOCK OFF ON STREET SIGNS

It is unfortunate I only found the NY Post as a source for this, but it is still an interesting moment of research-to-practice. From the article:

The Capital of the World is going lower-case.

Federal copy editors are demanding the city change its 250,900 street signs — such as these for Perry Avenue in The Bronx — from the all-caps style used for more than a century to ones that capitalize only the first letters.

Changing BROADWAY to Broadway will save lives, the Federal Highway Administration contends in its updated Manual on Uniform Traffic Control Devices, citing improved readability.

Studies have shown that it is harder to read all-caps signs, and those extra milliseconds spent staring away from the road have been shown to increase the likelihood of accidents, particularly among older drivers, federal documents say.

The new regulations also require a change in font from the standard highway typeface to Clearview, which was specially developed for this purpose.

I think it is counterintuitive how much sentence-case helps with reading. For example, my mother asked me last year to help her type and print a speech she was giving. She wanted it in all caps so she could “read it more easily” while standing up. I think there is a perception of caps as larger and therefore more readable and this will have to be overcome for initiatives like this one to succeed. (I did not end up convincing my mother, even after making a nice large font, and so I printed it just how she wanted it… in all, unreadable, caps.)

Photo credit ➨ Redvers